Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m

The set Q consists of the following terms:

p(x0, x1, s(x2))
p(x0, s(x1), 0)
p(x0, 0, 0)


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

P(m, n, s(r)) → P(m, r, n)
P(m, s(n), 0) → P(0, n, m)

The TRS R consists of the following rules:

p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m

The set Q consists of the following terms:

p(x0, x1, s(x2))
p(x0, s(x1), 0)
p(x0, 0, 0)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP

Q DP problem:
The TRS P consists of the following rules:

P(m, n, s(r)) → P(m, r, n)
P(m, s(n), 0) → P(0, n, m)

The TRS R consists of the following rules:

p(m, n, s(r)) → p(m, r, n)
p(m, s(n), 0) → p(0, n, m)
p(m, 0, 0) → m

The set Q consists of the following terms:

p(x0, x1, s(x2))
p(x0, s(x1), 0)
p(x0, 0, 0)

We have to consider all minimal (P,Q,R)-chains.